Chào mừng quý vị đến với HỘI CHS KHU VỰC PHÍA BẮC.
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy đăng ký thành viên tại đây hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.
Đề cương ôn tập toán 9 HK II

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn: Sưu tầm
Người gửi: Trịnh Thị Hồng Nhung (trang riêng)
Ngày gửi: 16h:05' 19-10-2017
Dung lượng: 94.7 KB
Số lượt tải: 80
Nguồn: Sưu tầm
Người gửi: Trịnh Thị Hồng Nhung (trang riêng)
Ngày gửi: 16h:05' 19-10-2017
Dung lượng: 94.7 KB
Số lượt tải: 80
Số lượt thích:
0 người
ĐỀ CƯƠNG ÔN TẬP HỌC KÌ 2- NĂM HỌC 2012 -2013
MÔN TOÁN
I.LÍ THUYẾT
A) PHẦN ĐẠI SỐ:
1. Nội dung 1:
Định nghĩa: Phương trình bậc hai một ẩn là phương trình có dạng :ax2 +bx +c = 0(a0), trong đó x là ẩn,a,b,c là các số cho trước(hay còn gọi là hệ số).
Cho phương trình bậc hai: ax2 + bx + c = 0 (a ≠ 0)
CÔNG THỨC NGHIỆM TỔNG QUÁT
CÔNG THỨC NGHIỆM THU GỌN
: phương trình có 2 nghiệm phân biệt
: phương trình có 2 nghiệm phân biệt
: phương trình có nghiệm kép
: phương trình có nghiệm kép
: phương trình vô nghiệm
: phương trình vô nghiệm
2. Nội dung 2:
a) * Phương trình trùng phương có dạng: ax4 + bx + c = 0 (a ≠ 0)
* Cách giải: Đặt t = x2 với t ≥ 0, ta có phương trình bậc hai theo ẩn t: at2 + bt + c = 0
-> giải phương trình tìm t ≥ 0 => x
b) Phương trình chứa ẩn ở mẫu:
- Bước 1: Tìm ĐKXĐ
- Bước 2: Quy đồng và khử mẫu
- Bước 3: Giải PT vừa tìm được
- Bước 4: Kết luận.(Chú ý đối chiếu với ĐKXĐ)
c) * Phương trình tích có dạng: A.B.C = 0. * Cách giải: A.B.C = 0 ( A = 0 hoặc B = 0 hoặc C = 0
3. Nội dung 3:
1. Định lí Vi –ét: Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 thì:
*Chú ý: Để kiểm tra phương trình bậc hai có nghiệm, ta kiểm tra một trong hai cách sau:
1) a.c<0 thì PT có hai nghiệm phân biệt.
2) ( ( 0 hoặc (’ ( 0 thì PT co hai nghiệm.
*Một số bài toán áp dụng định lí Viét: a) x1 + x2 = , b) x1.x2 = ,
c) x12 + x22 = (x1 + x2)2 – 2x1.x2, d) x13 + x23 = (x1 + x2)3 – 3x1.x2(x1 + x2)
2. Định lí Vi –ét đảo: Nếu có hai số u và v sao cho thì u, v là hai nghiệm của phương trình x2 – Sx + P = 0.
3. Cách tính nhẩm nghiệm của phương trình bậc hai: ax2 + bx + c = 0 (a ≠ 0)
- Nếu a + b + c = 0 thì phương trình có nghiệm là x1 = 1; x2 = .
- Nếu a – b + c = 0 thì phương trình có nghiệm là x1 = -1; x2 = .
4. Nội dung 4:
Để phương trình: ax2 + bx + c = 0 (a ≠0)
a) Có nghiệm khi
b) Có 2 nghiệm phân biệt khi
c) Vô nghiệm khi Δ < 0
d) Có 2 nghiệm cùng dấu khi
.5. Nội dung 5: Hệ phương trình
- Giải hệ phương trình cơ bản và đưa được về dạng cơ bản: Phương pháp thế, Phương pháp cộng, Phương pháp đặt ẩn phụ.
- Cho hệ phương trình: (I)
a) Để hệ phương trình (I) có nghiệm duy nhất <=>
b) Để hệ phương trình (I) có vô số nghiệm <=>
c) Để hệ phương trình (I) vô nghiệm <=>
B) PHẦN HÌNH HỌC:
1. Các góc đối với đường tròn:
Góc ở tâm, góc nội tiếp đường tròn, góc tạo bởi tia tiếp tuyến và dây cung, góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn. ( Các em ôn ở SGK)
2. Các công thức tính:
- Độ dài đường tròn(chu vi ): C = 2(R trong đó ( ( 3,14; R là bán kính; C là độ dài đường tròn.
- Độ dài cung tròn: l = trong đó ( ( 3,14; R là bán kính; l là độ dài cung tròn; n là số đo cung.
- Diên tích hình tròn: S = (R2
- Diện tích hình quạt tròn: = trong đó l là độ dài cung tròn, n là số đo cung.
3. Một số định lí quan trọng về đường kính và dây cung:
a) Trong một đường
MÔN TOÁN
I.LÍ THUYẾT
A) PHẦN ĐẠI SỐ:
1. Nội dung 1:
Định nghĩa: Phương trình bậc hai một ẩn là phương trình có dạng :ax2 +bx +c = 0(a0), trong đó x là ẩn,a,b,c là các số cho trước(hay còn gọi là hệ số).
Cho phương trình bậc hai: ax2 + bx + c = 0 (a ≠ 0)
CÔNG THỨC NGHIỆM TỔNG QUÁT
CÔNG THỨC NGHIỆM THU GỌN
: phương trình có 2 nghiệm phân biệt
: phương trình có 2 nghiệm phân biệt
: phương trình có nghiệm kép
: phương trình có nghiệm kép
: phương trình vô nghiệm
: phương trình vô nghiệm
2. Nội dung 2:
a) * Phương trình trùng phương có dạng: ax4 + bx + c = 0 (a ≠ 0)
* Cách giải: Đặt t = x2 với t ≥ 0, ta có phương trình bậc hai theo ẩn t: at2 + bt + c = 0
-> giải phương trình tìm t ≥ 0 => x
b) Phương trình chứa ẩn ở mẫu:
- Bước 1: Tìm ĐKXĐ
- Bước 2: Quy đồng và khử mẫu
- Bước 3: Giải PT vừa tìm được
- Bước 4: Kết luận.(Chú ý đối chiếu với ĐKXĐ)
c) * Phương trình tích có dạng: A.B.C = 0. * Cách giải: A.B.C = 0 ( A = 0 hoặc B = 0 hoặc C = 0
3. Nội dung 3:
1. Định lí Vi –ét: Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 thì:
*Chú ý: Để kiểm tra phương trình bậc hai có nghiệm, ta kiểm tra một trong hai cách sau:
1) a.c<0 thì PT có hai nghiệm phân biệt.
2) ( ( 0 hoặc (’ ( 0 thì PT co hai nghiệm.
*Một số bài toán áp dụng định lí Viét: a) x1 + x2 = , b) x1.x2 = ,
c) x12 + x22 = (x1 + x2)2 – 2x1.x2, d) x13 + x23 = (x1 + x2)3 – 3x1.x2(x1 + x2)
2. Định lí Vi –ét đảo: Nếu có hai số u và v sao cho thì u, v là hai nghiệm của phương trình x2 – Sx + P = 0.
3. Cách tính nhẩm nghiệm của phương trình bậc hai: ax2 + bx + c = 0 (a ≠ 0)
- Nếu a + b + c = 0 thì phương trình có nghiệm là x1 = 1; x2 = .
- Nếu a – b + c = 0 thì phương trình có nghiệm là x1 = -1; x2 = .
4. Nội dung 4:
Để phương trình: ax2 + bx + c = 0 (a ≠0)
a) Có nghiệm khi
b) Có 2 nghiệm phân biệt khi
c) Vô nghiệm khi Δ < 0
d) Có 2 nghiệm cùng dấu khi
.5. Nội dung 5: Hệ phương trình
- Giải hệ phương trình cơ bản và đưa được về dạng cơ bản: Phương pháp thế, Phương pháp cộng, Phương pháp đặt ẩn phụ.
- Cho hệ phương trình: (I)
a) Để hệ phương trình (I) có nghiệm duy nhất <=>
b) Để hệ phương trình (I) có vô số nghiệm <=>
c) Để hệ phương trình (I) vô nghiệm <=>
B) PHẦN HÌNH HỌC:
1. Các góc đối với đường tròn:
Góc ở tâm, góc nội tiếp đường tròn, góc tạo bởi tia tiếp tuyến và dây cung, góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn. ( Các em ôn ở SGK)
2. Các công thức tính:
- Độ dài đường tròn(chu vi ): C = 2(R trong đó ( ( 3,14; R là bán kính; C là độ dài đường tròn.
- Độ dài cung tròn: l = trong đó ( ( 3,14; R là bán kính; l là độ dài cung tròn; n là số đo cung.
- Diên tích hình tròn: S = (R2
- Diện tích hình quạt tròn: = trong đó l là độ dài cung tròn, n là số đo cung.
3. Một số định lí quan trọng về đường kính và dây cung:
a) Trong một đường
 
↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng RAR và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT ↓








Ý KIẾN MỚI NHẤT